Fast Imaging in the Dark by using Convolutional Network









Abstract

While fast imaging in low-light condition is crucial for surveillance and robot applications, it is still a formidable challenge to resolve the seemingly inevitable high noise level and low photon count issues. A variety of image enhancement methods such as de-blurring and de-noising have been proposed in the past. However, limitations can still be found in these methods under extreme low-light condition. To overcome such difficulty, a learning-based image enhancement approach is proposed in this paper. In order to support the development of learning-based methodology, we collected a new low-lighting dataset (


Modules


Algorithms

Convolution neural network (CNN)


Software And Hardware

• Hardware: Processor: i3 ,i5 RAM: 4GB Hard disk: 16 GB • Software: operating System : Windws2000/XP/7/8/10 Anaconda,jupyter,spyder,flask Frontend :-python Backend:- MYSQL