A Honeypot with Machine Learning based Detection Framework for defending IoT based Botnet DDoS Attacks









Abstract

With the tremendous growth of IoT botnet DDoS attacks in recent years, IoT security has now become one of the most concerned topics in the field of network security. A lot of security approaches have been proposed in the area, but they still lack in terms of dealing with newer emerging variants of IoT malware, known as Zero-Day Attacks. In this paper, we present a honeypot-based approach which uses machine learning techniques for malware detection. The IoT honeypot generated data is used as a dataset for the effective and dynamic training of a machine learning model. The approach can be taken as a productive outset towards combatting Zero-Day DDoS Attacks which now has emerged as an open challenge in defending IoT against DDoS Attacks.


Modules


Algorithms


Software And Hardware

• Hardware: Processor: i3 ,i5 RAM: 4GB Hard disk: 16 GB Raspberry pi/arduino,other hardware components (please call) • Software: operating System : Windws2000/XP/7/8/10 Anaconda,jupyter,spyder,flask Frontend :-python Backend:- MYSQL