Deep Learning Based Phase Reconstruction for Speaker Separation: A Trigonometric Perspective


This study investigates phase reconstruction for deep learning based monaural talker-independent speaker separation in the short-time Fourier transform (STFT) domain. The key observation is that, for a mixture oftwo sources, with their magnitudes accurately estimated and under a geometric constraint, the absolute phase difference between each source and the mixture can be uniquely determined; in addition, the source phases at each time-frequency T - F unit can be narrowed down to only two candidates. To pick the right candidate, we propose three algorithms based on iterative phase reconstruction, group delay estimation, and phase-difference sign prediction. State-of-the-art results are obtained on the publicly available wsj0-2mix and 3 mix corpus.



Software And Hardware

• Hardware: Processor: i3 ,i5 RAM: 4GB Hard disk: 16 GB • Software: operating System : Windws2000/XP/7/8/10 Anaconda,jupyter,spyder Frontend :-python Backend:- MYSQL